Expression of UV-Sensitive Parapinopsin in the Iguana Parietal Eyes and Its Implication in UV-Sensitivity in Vertebrate Pineal-Related Organs

نویسندگان

  • Seiji Wada
  • Emi Kawano-Yamashita
  • Mitsumasa Koyanagi
  • Akihisa Terakita
چکیده

The pineal-related organs of lower vertebrates have the ability to discriminate different wavelengths of light. This wavelength discrimination is achieved through antagonistic light responses to UV or blue and visible light. Previously, we demonstrated that parapinopsin underlies the UV reception in the lamprey pineal organ and identified parapinopsin genes in teleosts and frogs of which the pineal-related organs were reported to discriminate light. In this study, we report the first identification of parapinopsin in the reptile lineage and show its expression in the parietal eye of the green iguana. Spectroscopic analysis revealed that iguana parapinopsin is a UV-sensitive pigment, similar to lamprey parapinopsin. Interestingly, immunohistochemical analyses using antibodies specific to parapinopsin and parietopsin, a parietal eye green-sensitive pigment, revealed that parapinopsin and parietopsin are colocalized in the outer segments of the parietal eye photoreceptor cells in iguanas. These results strongly suggest that parapinopsin underlies the wavelength discrimination involving UV reception in the iguana parietal eye. The current findings support the idea that parapinopsin is a common photopigment underlying the UV-sensitivity in wavelength discrimination of the pineal-related organs found from lampreys to reptiles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bistable UV pigment in the lamprey pineal.

Lower vertebrates can detect UV light with the pineal complex independently of eyes. Electrophysiological studies, together with chromophore extraction analysis, have suggested that the underlying pigment in the lamprey pineal exhibits a bistable nature, that is, reversible photoreaction by UV and visible light, which is never achieved by known UV pigments. Here we addressed the molecular ident...

متن کامل

Activation of Transducin by Bistable Pigment Parapinopsin in the Pineal Organ of Lower Vertebrates

Pineal organs of lower vertebrates contain several kinds of photosensitive molecules, opsins that are suggested to be involved in different light-regulated physiological functions. We previously reported that parapinopsin is an ultraviolet (UV)-sensitive opsin that underlies hyperpolarization of the pineal photoreceptor cells of lower vertebrates to achieve pineal wavelength discrimination. Alt...

متن کامل

Vertebrate Bistable Pigment Parapinopsin: Implications for Emergence of Visual Signaling and Neofunctionalization of Non-visual Pigment

Opsins are light-sensor proteins, each absorbing a specific wavelength of light. This, in turn, drives a specific G protein-mediated phototransduction cascade, leading to a photoreceptor cell response. Recent genome projects have revealed an unexpectedly large number of opsin genes for vision and non-visual photoreception in various animals. However, the significance of this multiplicity of ops...

متن کامل

Immunohistochemical characterization of a parapinopsin-containing photoreceptor cell involved in the ultraviolet/green discrimination in the pineal organ of the river lamprey Lethenteron japonicum.

In the pineal organ, two types of ganglion cell exhibit antagonistic chromatic responses to UV and green light, and achromatic responses to visible light. In this study, we histologically characterized UV-sensitive photoreceptor cells that contain a unique non-visual UV pigment, lamprey parapinopsin, in order to elucidate the neural network that is associated with antagonistic chromatic respons...

متن کامل

Beta-Arrestin Functionally Regulates the Non-Bleaching Pigment Parapinopsin in Lamprey Pineal

The light response of vertebrate visual cells is achieved by light-sensing proteins such as opsin-based pigments as well as signal transduction proteins, including visual arrestin. Previous studies have indicated that the pineal pigment parapinopsin has evolutionally and physiologically important characteristics. Parapinopsin is phylogenetically related to vertebrate visual pigments. However, u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012